Who’s Out There—Surprises on Titan3 min read

In 1980 Voyager One photographed Saturn’s far out, large moon Titan as a hazy orange ball, its weighty nitrogen-rich atmosphere more than one hundred kilometers high, loaded with many organics–methane, ethane, ethylene, acetylene, benzene, carbon monoxide, carbon dioxide, hydrogen cyanide, cyanogen(C2N2), acetonitrile(CH3CN)–even polycyclics and ionic hydrocarbons. An impressive list! Surely enough to start life going. Well, maybe.

Then, beneath the hazy smog, Cassini and its Huygens Lander delivered a surprise–continent-like dark patterns, river-like branched channels, basins and low plains. Equatorial sand dunes surrounded irregular highlands made of granular ice and organic compounds, not silicates as on Earth. Since meteors needed to be fairly large to make it through Titan’s smog, craters numbered less than 12.



The portrait of Titan rapidly grew more interesting. Various-sized lakes of ethane appeared at the polar regions, one as large as Lake Superior. Soon, an undersurface ocean, like Europa’s, became a real possibility. Evidence for alkaline water beneath the solid frozen surface (-180°C) included radar images, the disconnect between Titan’s rotational period and surface rotation, and volcanism spewing ammonia water. The latter’s resurfacing activity added to that produced by sporadic methane/ethane rains released in torrents from blowing clouds in the dense atmosphere.

So who’s out there? Some critters like the Europaians? Could be. There are plenty of organics, a dense atmosphere, and liquid in ethane/methane ponds, lakes and rivers—even an undersurface ocean of ammonia-water, providing opportunity for life to develop in benthic (ocean bottom) and icy ceiling alkaline environments. If Titan had a surface ocean in its early days–even though the sun’s light provided only 2% of what Earth gets–microbial films might have evolved along with more advanced reeds, scrapers and fungi, but they had to be able to tolerate alkaline conditions and lots of hydrocarbons. Perhaps they are still hanging on, as scum on the sides of channels or the bottom of ethane lakes.

[frame type=”lifted” align=”none”]titan[/frame]

As Titan’s surface froze solid and the ethane/methane rains began, the two different environments mentioned above would have developed housing for the original hydrophobes or hydrocarbon-tolerant aquatics postulated by Irwin and Schulze-Makuch in the book Cosmic Biology.

The most challenging requirement for life to survive on Titan may not be the hydrocarbons and energy challenges so much as the extreme cold, which guarantees that any metabolism would be quite slow. Low reaction rates would also mean less mobility, and the puny amounts of oxygen in Titan’s atmosphere and the lack of free compounds for oxidation-reduction reactions don’t help.

However, there is hope for life out there. Evolution finds a way, as our extremeophiles illustrate. On Earth there is a fungus of the genus Fusarium that degrades hydrocarbons in conditions with little oxygen and water. Its membranes protect it from its hydrophobic environment. In Trinidad, microbial life has been found in a liquid asphalt lake. Bacillus cereus degrades n-hexadecane in a Chinese oilfield, and anaerobes are known to degrade petroleum sludge.

Though the biochemistry may be like nothing we know, three basic conditions for life on Titan could be met. 1)Boundry membranes could be formed from Titan’s insoluble tholins (polymeric molecules formed by UV irradiation of organics and nitriles), which precipitate out or rain down on the moon. Silanes offer another possibility. In the ammonia-water of the undersurface lakes, lipophilic membranes would make sense.

2)Variable molecules that transmit needed information for life could “easily” form, like hydrocyanic acid nitriles, courtesy of the UV light and ionizing radiation in the upper atmosphere.

3)Energy to power simple, microbial life could be farmed from sources like atmospheric carbon monoxide and ions or water soaring out from Enceladus’s south pole. With its triple bonds, acetylene in Titan’s upper atmosphere could react with hydrogen to produce methane and energy. Such methanogenesis would also be useful on a subsurface ice ceiling or ocean bottom near the metallic core of Titan.

It’s a stretch—but so are we. While the space explorers labor over their heaps of data, we can enjoy the ride into the improbable, until they find more surprises.

 

Enhanced by Zemanta
SHARE THIS POST
Love
Haha
Wow
Sad
Angry

Cary Neeper is an avid student of complexity theory, sustainability, steady-state economics, and the impact of cosmology on issues of science and religion. She grew up in the foothills of Hayward, California, where she helped rack dried fruit on her father’s 40-acre apricot ranch. After studying zoology/chemistry and religion at Pomona College and medical microbiology at the University of Wisconsin, she moved with her husband to northern New Mexico, where they raised their family. The Neepers still live in the Southwest with a friendly menagerie of dogs, fish, chickens, geese, ducks and a turkey called Little Bear. Cary plays string bass with local folk, symphony and jazz groups and tennis with local retired physicists. She paints landscapes in acrylics, including the cover art for her first Penscript title, The Webs of Varok. Cary's first novel and Webs of Varok prequel A Place Beyond Man was originally published in 1975 by Charles Scribner’s Sons, Dell, and Millington, London. Cary re-released A Place Beyond Man as an Author’s Guild Backinprint edition, now available from online booksellers. Its themes of sustainability and interspecies cooperation have now grown into new adventures for its human, elll and varok family as they travel the alternate 21st century Solar System in the five-volume Archives of Varok, coming from Penscript Publishing House in 2012–2014. Cary’s other works include two musical science fiction comedies “U.F.F.D.A.!” and “Petra and the Jay,” as well as newspaper and magazine articles, essays, short stories, and book reviews for The Christian Science Monitor.

You may also like...

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from Astronaut.com.

You have Successfully Subscribed!