Tau Ceti another interstellar target6 min read

Tau Ceti recently crashed into the headlines after it was announced that a system of five worlds may be in orbit around the star. Although the exoplanets have yet to be confirmed, this discovery is profound in that one of the worlds, a “super-Earth” designated Tau Ceti “e” — may be sitting inside the star’s so-called habitable zone.

The habitable zone is considered the perfect location in a star’s orbit for a world to support liquid water (it’s not too hot and not too cold), a substance essential for the evolution of life as we know it.

If this world is proven to exist — follow-up studies by other observatories are required to confirm its orbit and size — the 4.3 Earth-mass world will become famous for being the smallest world discovered within the habitable zone of another star.

Within Reach?

Not only is Tau Ceti’s “super-Earth” a curious objective for astronomers to seek out extraterrestrial life, the nearby star could be within the reach of a future interstellar mission.

Tau Ceti may well be in our proverbial “cosmic backyard,” but it is still 12 light-years from Earth. The energies and speeds needed to make a hypothetical (unmanned) probe a reality aren’t possible using current technologies, but according to Paul Gilster, co-founder of the Tau Zero Foundation and author of the book Centauri Dreams(and writer for the blog of the same name), such a feat may not remain “impossible” for too long.

“Pushing a ‘lightsail’ by beamed laser or microwave propulsion (leaving the ‘fuel’ at home) may be able to get us up to ten percent or so of the speed of light, which would give us a mission to Tau Ceti of a bit over a century,” Gilster told Discovery News.

“Fusion prospects of the kind studied by Project Icarus (one of the projects managed by the non-profit organization Icarus Interstellar) are also an option, though sails have already been demonstrated in space and are further along in their development.”

There’s also the possibility of using antimatter to get “maximum bang for the buck,” Gilster points out, but we have yet to develop a means of generating enough antimatter for it to be used as an interstellar fuel. And then there’s the tricky matter (no pun intended) of storing the stuff and controlling the reactions inside a hypothetical antimatter engine.

But this is the reason why we should be researching multiple avenues of research when it comes to the possible modes of interstellar travel.

“The Tau Zero Foundation hopes to advance the human prospect for interstellar flight by defining the issues and keeping all the propulsion options on the table,” Gilster points out. “It is simply too early to down-select to a single propulsion system.

“Instead, incremental advances across the spectrum of possibilities will help us, over time, learn which methods will offer the soundest prospects. We’d like to encourage and, when it becomes possible, assist in the funding of such research.

“A second goal is to keep the idea of interstellar flight in front of the public through education, so that the relevant research is not only highlighted but supported through both philanthropy and government.”

Going Interstellar By Public Demand

The selection of propulsion methods is one thing, but interstellar advocates agree that when we do detectthat bona fide habitable world — with hints of a biosphere and presence of liquid water — the public will demand further study.

And that means physically going there.

“In the event a habitable planet around a nearby star like Tau Ceti is confirmed, the best next step would be a space-based observatory specifically targeting nearby stars (Kepler’s targets are much more remote in order to take the statistical pulse of the planet population),” said Gilster. (Targeted searches have been carried out by SETI, in the hope of detecting a radio signal from a hypothetical alien civilization in the Tau Ceti system — but none have detected any artificial transmissions.)

“I have often imagined the day when scientists directly image an Earth-like extra-solar planet,” Icarus Deputy Project Leader Robert Freeland told Discovery News during an interview in October after the discovery of a small exoplanet orbiting Alpha Centauri (a binary star located only 4.4 light-years away). “We would be able to determine the planet’s atmosphere and surface temperature from its spectrum, and we would thus know whether it might be able to sustain life as we know it.

“I suspect that once such a discovery hits the news, people worldwide are going to demand that we send a probe to determine whether the planet has life (of any type) and/or could be suitable for human habitation,” Freeland added.

“Tau Ceti is about 12 light-years away, and with the right instrumentation, we will be able to make a spectroscopic analysis of the atmospheres of planets there,” Gilster said. “If we discover a biosignature indicating life is present, this will clearly make such a planet a priority for any future probes. A probe like this could get into space in the next two decades if funding emerges.”

A New Era

By extrapolating the energy we produce today, Gilster is realistic that an interstellar probe may be a long way off. But that’s not accounting for unforeseen, disruptive technologies that may rapidly enhance our ability of sending a robotic emissary (and eventually a human mission) to a nearby star.

We are truly in a new era of space exploration. Not only are we discovering a multitude of extra-solar planets, we are also advancing the role that robotics play in space. It’s only a matter of time that these machines become so advanced that they will become fully autonomous — humans will be cut out of the loop. For a robotic interstellar probe, this will be a necessity as the vast interstellar distances will quickly generate unworkable time lags of years to send and receive commands.

The speed of light will quickly become a frustrating barrier (after all, should a probe make it to Tau Ceti, it would take 12 years for us to receive the first images of any “habitable” exoplanet), the probe would be by itself, exploring in the name of humanity.

But like any interstellar concept, it’s a question of energy production. Until we find a way of overcoming this challenge, we will be forever quarantined from the promising planets orbiting neighboring stars, depending on increasingly powerful telescopes to peek into their atmospheres, frustrated that we can’t see them up-close.

But with the ongoing efforts of organizations such as the Tau Zero FoundationIcarus Interstellar and the 100 Year Star Ship Project, the science behind interstellar travel will remain in the public mindset, hopefully facilitating mankind’s push into the expanse between the stars while motivating exploration within the solar system.


Source: Discovery News

Related articles

Enhanced by Zemanta
Sebastien Clarke
Sebastien Clarke

Astronaut is dedicated to bringing you the latest news, reviews and information from the world of space, entertainment, sci-fi and technology. With videos, images, forums, blogs and more, get involved today & join our community!

Leave a Reply

Your email address will not be published. Required fields are marked *

You may also like...

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from Astronaut.com.

You have Successfully Subscribed!