NASA’s 2020 rover will search Mars for signs of life5 min read

And now we know exactly where it’s going to poke around.

NASA has big plans for its upcoming Mars 2020 rover, launching in the summer of 2020 (duh) and arriving at the red planet the following February. Picking a landing site for a mission like this effectively shows what type of scientific studies you want to prioritize. To that end, the selection of Jezero Crater, announced this week, affirms the desire of NASA and its partners to learn if Mars was (or is) home to extraterrestrial life of some kind.

This artist’s concept depicts NASA’s Mars 2020 rover exploring the red planet.
NASA/JPL-Caltech

That’s not spin—it’s something scientists are expressing themselves. “There’s a wide diversity of outcrop and rock types accessible at this site, which the Mars 2020 rover will be able to interrogate to vastly improve our understanding of the ancient Martian surface environment, and whether it might preserve any evidence for past life,” says Timothy Goudge, a planetary scientist at The University of Texas at Austin. He calls Jezero “an incredible landing site that will provide us with immense opportunity to do very compelling and interesting science.”

The 28-mile-wide crater was selected from out of three finalist sites on the Martian surface, which included Northeast Syrtis (home to buried hydrothermal systems) and Columbia Hills (notable for being home to former hot springs). A dark horse candidate, Midway (also home to ancient hydrothermal activity) was also considered. Jezero Crater and Northeast Syrtis were the frontrunners, but neither had a clear lead in support, and Thomas Zurbuchen, the associate administrator for NASA’s Science Mission Directorate, ultimately chose Jezero.

It’s not hard to see why, given Jezero’s location. “We think we can actually roll out of Jezero and onto the surrounding plains and to get to one of the other landing sites, Midway—which is a totally different kind of geological environment,” says Briony Horgan, an assistant professor of planetary science at Purdue University who helped evaluate the candidates. “I think the whole team is excited about that possibility in particular. The kind of samples we can get from both of those sites is a total hole-in-one. It’ll just be an incredible find, not just for Mars but for essentially the whole solar system.”

But Jezero was popular to begin with because it’s probably one the oldest preserved lake basins on Mars. Briony and her colleagues think it was an active lake with a river system during the Noachian Period (the Martian geological era ranging between 4.1 and 3.7 billion years ago), when Mars boasted the most surface water activity in its history. Two main river valleys would have fed water into the lake basin, and an outlet valley would have allowed water to drain out.

The 28-mile-wide crater was selected from out of three finalist sites on the Martian surface, which included Northeast Syrtis (home to buried hydrothermal systems) and Columbia Hills (notable for being home to former hot springs). A dark horse candidate, Midway (also home to ancient hydrothermal activity) was also considered. Jezero Crater and Northeast Syrtis were the frontrunners, but neither had a clear lead in support, and Thomas Zurbuchen, the associate administrator for NASA’s Science Mission Directorate, ultimately chose Jezero.

READ MORE:  Private spaceship builders split $30M in NASA funds

It’s not hard to see why, given Jezero’s location. “We think we can actually roll out of Jezero and onto the surrounding plains and to get to one of the other landing sites, Midway—which is a totally different kind of geological environment,” says Briony Horgan, an assistant professor of planetary science at Purdue University who helped evaluate the candidates. “I think the whole team is excited about that possibility in particular. The kind of samples we can get from both of those sites is a total hole-in-one. It’ll just be an incredible find, not just for Mars but for essentially the whole solar system.”

But Jezero was popular to begin with because it’s probably one the oldest preserved lake basins on Mars. Briony and her colleagues think it was an active lake with a river system during the Noachian Period (the Martian geological era ranging between 4.1 and 3.7 billion years ago), when Mars boasted the most surface water activity in its history. Two main river valleys would have fed water into the lake basin, and an outlet valley would have allowed water to drain out.

On Mars, carbonates are inexplicably rare. Even more inexplicable, they’re actually more abundant in Jezero Crater. According to Horgan, they may have precipitated out of the water itself. “A rapid precipitation of minerals like that in water does a really nice job of trapping whatever is living in the water,” she says. Basically, the carbonate deposits could have preserved any Martian microbes that were living at the bottom of the lake or by the shoreline, or any biosignatures those lifeforms produced. “We could potentially observe those things directly with the rover and its instruments onboard. That’s a really exciting possibility.”

And to pile on top of all that, there might be a lava flow situated on top of all these lake sediments. A sample of the lava flow could help us better understand the geological history of Mars, and also help us narrow down the age of Jezero and other craters found throughout the red planet.

On Mars, carbonates are inexplicably rare. Even more inexplicable, they’re actually more abundant in Jezero Crater. According to Horgan, they may have precipitated out of the water itself. “A rapid precipitation of minerals like that in water does a really nice job of trapping whatever is living in the water,” she says. Basically, the carbonate deposits could have preserved any Martian microbes that were living at the bottom of the lake or by the shoreline, or any biosignatures those lifeforms produced. “We could potentially observe those things directly with the rover and its instruments onboard. That’s a really exciting possibility.”

And to pile on top of all that, there might be a lava flow situated on top of all these lake sediments. A sample of the lava flow could help us better understand the geological history of Mars, and also help us narrow down the age of Jezero and other craters found throughout the red planet.


Sources: • Popsci

Featured Image:

NASA/JPL-Caltech


SHARE THIS POST
Love
Haha
Wow
Sad
Angry
Sebastien Clarke

Astronaut is dedicated to bringing you the latest news, reviews and information from the world of space, entertainment, sci-fi and technology. With videos, images, forums, blogs and more, get involved today & join our community!

You may also like...

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from Astronaut.com.

You have Successfully Subscribed!